

When these changes are paramount to a design process, ground water reading may require a "zero" volume change device such as a diaphragm transducer to read changes in groundwater head in a real time environment. Flow velocities in clays can be less than 1 foot/year.ĭue to the slow rate of flow in cohesive soils and wells, piezometers and other subsurface instruments may take days to months to record groundwater changes and pressure. Groundwater conditions in cohesive soils (clay and silty clay) cannot be visually observed for water flow and often need to be tested in the lab. Groundwater conditions can typically be visually observed in cohesionless soils (sands, gravels, and silty sands) because water can flow more readily through these types of soils. Subsurface Investigation: Test borings and/or test pits to depths below the anticipated excavation will be required to define the ground water depth and conditions including static, perched, and artesian conditions. Reconnaissance : Using imagery interpretation and site visits to identify an overview of water table conditions, but often requires subsurface investigations. How is groundwater identified and evaluated during planning and construction? Water leaks, wet basements, and mold growth.


Groundwater is a frequent cause of disputes between owners and contractors in construction projects.Ĭommon ground water issues during construction:Ĭommon ground water problems after construction: Whenever construction must take place below the water table or soil is used to retain water, groundwater affects the project by impacting the function and design of the facility, and the cost of its construction. Groundwater pressure heads can exceed elevation heads and, in those cases, result in water flowing out on the ground surface as artesian flows or springs or swampy wetlands. Changes in groundwater surfaces can be slow as they can change seasons, or they can be relatively rapid such as in tidal basins or storm water detention basins. Groundwater tables can fluctuate with time. These characteristics come into effect below the groundwater surface or table. When soil is saturated, the soil media takes on very specific physical characteristic due to the relative incompressibility of water. The flow of groundwater below the surface is a fundamental property that controls the strength and compressibility of soil impacting soil's ability hold up on structural loads. Groundwater is found beneath the Earth's surface in soil pore spaces and rock formation fractures. Considerations for Identification and Evaluation 10 November 2020
